
Zero-inflation, and how to deal with it in R and JAGS
(requires R-packages AER, coda, lme4, R2jags, DHARMa/devtools)

Carsten F. Dormann
07 December, 2016

Contents
1 Introduction: what is zero-inflation? 1

2 Mixture of distributions 1

3 Modelling mixture distributions in JAGS 2
3.1 Data preparation for JAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 The first (very primitive) zero-inflation model in JAGS . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Run the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Model 2: add predictors for λ 6

5 Model 3: add random effect for nest 8

6 Model 4: add effect of brood size on whether the chicks call at all 11

7 Model 5: add OLRE-overdispersion 13

8 Model diagnostics: simulation from model (5b) 16

1 Introduction: what is zero-inflation?

Put simply, if you have more 0s in your data than you would expect, you are facing zero-inflation. One
common cause of zero-inflation is overdispersion (dealt with in a separate example). If there is zero-inflation
even after properly modelling overdispersion (e.g. through a different family or observation-level random
effects), then we are talking real zero-inflation, in the strict sense.

We imagine the excess 0s to be the result of observing the outcome of two co-occurring processes, each
contributing some of the 0s. Let’s take an ecological example.

Imagine we count the number of frogs in 100 ponds at different distances from the river Elbe (as in the paper
by Dick et al., about to be published in J. Herpetology). We find that some ponds have no frog, others
hundreds. A histogram reveals a high number of 0s (not shown), and an excess even after using the negative
binomial. The authors hypothesis that two processes determine the number of frogs in a pond: (1) the
distance to the river determines whether a pond is colonised; (2) if colonised, the local conditions (pond area,
hydroperiod, fish) determine survival of spawning frogs, and hence finally the number of individuals.

2 Mixture of distributions

Thus, our data are a mixture of two distributions: one that describes whether a frog has reached the pond,
and one that describes how many eggs hatched if a frog reached the pond. In perfect analogy, we also have
to model the data as a mixture of two distributions, one for each of these two processes:

1



Y ∼

{
Pois(λ = mean abundance) , frog arrived
0 , frog did not arrive, with probability π

A mixture distribution is defined (according to Wikipedia and my understanding) as “a collection of random
variables derived as follows: first, a random variable is selected by chance from the collection according to
given probabilities of selection, and then the value of the selected random variable is realized”. This may
sound unnecessarily complicated, but essentially we use one distribution to pick another one, from which we
then draw the actual realised observation Yi. In our pond example, we draw from the Bernoulli distribution
whether a pond has been colonised, and then draw 0, if it hasn’t, or from a Poisson if it has.

We can also write down the actual probabilities of observing x frogs in a pond, remembering that the Poisson
distribution looks like this:

P (k = x) = λxe−lambda

x!
Then our new mixture of the Bernoulli (for the colonisation process) and Poisson (for the population dynamics)
is:

P (k = 0) = π(1 − π)e−λ

P (k = x) = (1 − π)λ
xe−λ

x!

So we see that our observed 0s have two sources: those that are 0 because of the Bernoulli distribution (the
proportion π), plus those from the Poisson distribution for the ponds that have been colonised, but failed to
generate surviving frogs (the proportion (1 − π) times the proportion of 0s in the Poisson distribution with a
given λ, which we can get from the Poisson distribution equation).

3 Modelling mixture distributions in JAGS

We use the owl begging data set of Roulin & Bersier (2007) from the glmmADMB-package. It describes
the number of begging calls (“sibling negotiations”) in a nest for females and males, being well-fed or
food-deprived. The data look like this:
if ("glmmADMB" %in% rownames(installed.packages()) == FALSE){

install.packages("R2admb")
install.packages("glmmADMB", repos=c("http://glmmadmb.r-forge.r-project.org/repos", getOption("repos")), type="source")

}

library(glmmADMB)
data(Owls)
summary(Owls)

Nest FoodTreatment SexParent ArrivalTime SiblingNegotiation BroodSize
Oleyes : 52 Deprived:320 Female:245 Min. :21.71 Min. : 0.00 Min. :1.000
Montet : 41 Satiated:279 Male :354 1st Qu.:23.11 1st Qu.: 0.00 1st Qu.:4.000
Etrabloz : 34 Median :24.38 Median : 5.00 Median :4.000
Yvonnand : 34 Mean :24.76 Mean : 6.72 Mean :4.392
Champmartin: 30 3rd Qu.:26.25 3rd Qu.:11.00 3rd Qu.:5.000
Lucens : 29 Max. :29.25 Max. :32.00 Max. :7.000
(Other) :379
NegPerChick logBroodSize

Min. :0.000 Min. :0.000
1st Qu.:0.000 1st Qu.:1.386
Median :1.200 Median :1.386
Mean :1.564 Mean :1.439

2



3rd Qu.:2.500 3rd Qu.:1.609
Max. :8.500 Max. :1.946

library(lattice)
bwplot(reorder(Nest,NegPerChick)~NegPerChick|FoodTreatment:SexParent, data=Owls)

NegPerChick

Forel
Jeuss

Etrabloz
AutavauxTV

StAubin
Payerne

LesPlanches
Bochet

Henniez
Champmartin

Seiry
GDLV

Oleyes
Franex

Marnand
Yvonnand

Lucens
Chevroux

Montet
Trey

Gletterens
Rueyes

CorcellesFavres
Murist

Lully
ChEsard

Sevaz

0 2 4 6 8

Deprived:Female Deprived:Male
Forel

Jeuss
Etrabloz

AutavauxTV
StAubin
Payerne

LesPlanches
Bochet

Henniez
Champmartin

Seiry
GDLV

Oleyes
Franex

Marnand
Yvonnand

Lucens
Chevroux

Montet
Trey

Gletterens
Rueyes

CorcellesFavres
Murist

Lully
ChEsard

Sevaz
Satiated:Female

0 2 4 6 8

Satiated:Male

The model will become slightly complicated by the fact that “SiblingNegotiations” are measured per nest,
rather than per chick. We hence would need to divide them by the number of chicks per nest, but that would

3



yield non-integer values! The solution is to use brood size as an offset (at the link-scale, i.e. using log(brood
size) instead).

3.1 Data preparation for JAGS

Let’s see how we can prepare the data for JAGS:
library(R2jags)
# prepare data as JAGS likes it:
attach(Owls)
head(Owls)

Nest FoodTreatment SexParent ArrivalTime SiblingNegotiation BroodSize NegPerChick
1 AutavauxTV Deprived Male 22.25 4 5 0.8
2 AutavauxTV Satiated Male 22.38 0 5 0.0
3 AutavauxTV Deprived Male 22.53 2 5 0.4
4 AutavauxTV Deprived Male 22.56 2 5 0.4
5 AutavauxTV Deprived Male 22.61 2 5 0.4
6 AutavauxTV Deprived Male 22.65 2 5 0.4

logBroodSize
1 1.609438
2 1.609438
3 1.609438
4 1.609438
5 1.609438
6 1.609438

Note that FoodTreatment and SexParent are factors. In a model, they need to be numerical values. The
simplest way to convert them is like this:
head(as.numeric(FoodTreatment))

[1] 1 2 1 1 1 1

This leads to values of 1, 2, . . . . Since there are only two levels, I want them to be 0 and 1:
head(as.numeric(FoodTreatment) - 1)

[1] 0 1 0 0 0 0
# and
head(as.numeric(SexParent) - 1)

[1] 1 1 1 1 1 1

However, there is a more convenient function to do this for us, and include interactions, too!
Xterms <- model.matrix(~ FoodTreatment*SexParent, data=Owls)[,-1]
head(Xterms)

FoodTreatmentSatiated SexParentMale FoodTreatmentSatiated:SexParentMale
1 0 1 0
2 1 1 1
3 0 1 0
4 0 1 0
5 0 1 0
6 0 1 0

Nice, ey? The “[,-1]” removes the intercept that would automatically be produced.

4



Which leads us to the JAGS-data:
OwlsData <- list(SibNeg = SiblingNegotiation, FoodTreatment=Xterms[,1], SexParent=Xterms[,2], FoodSex=Xterms[,3], Nest=Nest, lgBroodSize=log(BroodSize), N=nrow(Owls), nnests=length(levels(Owls$Nest)) )
detach(Owls)

Now comes the crucial bit!

3.2 The first (very primitive) zero-inflation model in JAGS

Note that it is costumary to model the proportion of 1s (now called ψ = 1 − π), rather than the proportion
of 0s (π)!
ZIPR <- function() {

for(i in 1:N){ # loop through all data points
SibNeg[i] ~ dpois(mu[i])
mu[i] <- lambda[i]*z[i] + 0.00001 ## hack required for Rjags -- otherwise 'incompatible'-error
z[i] ~ dbern(psi)

log(lambda[i]) <- lgBroodSize[i] + alpha
# lgBroodSize is offset
# alpha is overall intercept

}

# priors:
alpha ~ dnorm(0, 0.01) # overall model intercept
psi ~ dunif(0, 1) # proportion of non-zeros

}

Now we need to define which parameters to monitor, how to initialise them, and what the chain settings are:
parameters <- c("alpha", "psi") # which parameters are we interested in getting reported?

ni <- 1E3; nb <- ni/2 # number of iterations; number of burnins
nc <- 3; nt <- 5 # number of chains; thinning

inits <- function(){list(alpha=runif(1, 0, 2), psi = runif(1, 0, 1))}

And now we run it and look at the outcome.

3.3 Run the model

As usual, running the model takes a bit of time.
ZIPRjags <- jags(OwlsData, inits=inits, parameters, model.file = ZIPR, n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, working.directory = getwd())

5



plot(ZIPRjags)

80% interval for each chain R−hat
0

0

2000

2000

4000

4000

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

alpha
deviance

medians and 80% intervals

alpha

0.66

0.68

0.7

0.72

deviance

3640

3650

3660

3670

psi

0.7

0.72

0.74

0.76

0.78

Bugs model at "/var/folders/cc/3jfhfx190rb2ptxnqrqxj94m0000gp/T//RtmpeuCK00/model51bf76cb9378.txt", fit using jags, 3 chains, each with 1000 iterations (first 500 discarded)

ZIPRjags

Inference for Bugs model at "/var/folders/cc/3jfhfx190rb2ptxnqrqxj94m0000gp/T//RtmpeuCK00/model51bf76cb9378.txt", fit using jags,
3 chains, each with 1000 iterations (first 500 discarded), n.thin = 5
n.sims = 300 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha 0.695 0.016 0.664 0.684 0.696 0.707 0.726 0.997 300
psi 0.742 0.017 0.709 0.730 0.743 0.754 0.771 1.018 220
deviance 3654.960 10.158 3641.827 3649.634 3653.851 3661.293 3679.038 1.013 300

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 51.9 and DIC = 3706.9
DIC is an estimate of expected predictive error (lower deviance is better).

So we get estimates for ψ (around 0.74) and α (around 0.69), indicating that there is quite a bit of zero-
inflation! However, our model is currently really stupid and does not use any information on the predictors
to explain begging. Maybe once we put these in we can explain more of the 0s by “Poisson-zeros”, rather
than “Bernoulli-zeros” (aka excess zeros).

4 Model 2: add predictors for λ

6



ZIPR2 <- function() {
for(i in 1:N){ # loop through all data points

SibNeg[i] ~ dpois(mu[i])
mu[i] <- lambda[i]*z[i] + 0.00001 ## hack required for Rjags -- otherwise 'incompatible'-error
z[i] ~ dbern(psi)

log(lambda[i]) <- lgBroodSize[i] + alpha + beta[1]*FoodTreatment[i] + beta[2]*SexParent[i] + beta[3]*FoodSex[i]
# lgBroodSize is offset
# alpha is overall intercept

}

# priors:
alpha ~ dnorm(0, 0.01) # overall model intercept
for (m in 1:3){

beta[m] ~ dnorm(0, 0.01) # Linear effects
}
psi ~ dunif(0, 1) # proportion of non-zeros

}

parameters <- c("alpha", "beta", "psi") # which parameters are we interested in getting reported?
ZIPR2jags <- jags(OwlsData, inits=inits, parameters, model.file = ZIPR2, n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, working.directory = getwd())

plot(ZIPR2jags)

80% interval for each chain R−hat
−2000

−2000

0

0

2000

2000

4000

4000

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

alpha
beta[1][2][3]
deviance

medians and 80% intervals

alpha

0.7

0.75

0.8

0.85

beta

−0.4

−0.2

0

0.2

111111111 222222222 333333333

deviance

3600

3620

3640

3660

psi

0.7

0.72

0.74

0.76

0.78

Bugs model at "/var/folders/cc/3jfhfx190rb2ptxnqrqxj94m0000gp/T//RtmpeuCK00/model51bf330df586.txt", fit using jags, 3 chains, each with 1000 iterations (first 500 discarded)

ZIPR2jags

Inference for Bugs model at "/var/folders/cc/3jfhfx190rb2ptxnqrqxj94m0000gp/T//RtmpeuCK00/model51bf330df586.txt", fit using jags,
3 chains, each with 1000 iterations (first 500 discarded), n.thin = 5
n.sims = 300 iterations saved

7



mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha 0.771 0.030 0.710 0.751 0.772 0.792 0.825 1.033 68
beta[1] -0.220 0.051 -0.319 -0.257 -0.222 -0.188 -0.127 1.007 240
beta[2] -0.024 0.038 -0.100 -0.049 -0.025 0.005 0.045 1.032 59
beta[3] 0.076 0.069 -0.072 0.037 0.082 0.120 0.200 1.012 130
psi 0.743 0.018 0.708 0.730 0.743 0.754 0.775 1.009 250
deviance 3631.462 11.647 3613.885 3622.779 3629.631 3638.248 3656.015 1.004 300

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 68.3 and DIC = 3699.7
DIC is an estimate of expected predictive error (lower deviance is better).

So while the model has improved (the DIC is lower by 10 units), the value for ψ hasn’t changed much.

We can do better still.

Notice that so far the siblings within a nest are treated as independent, while they are in fact “nested” (pun
intended). So we need to incorporate a random term for nest as well.

5 Model 3: add random effect for nest

ZIPR3 <- function() {
for(i in 1:N){ # loop through all data points

SibNeg[i] ~ dpois(mu[i])
mu[i] <- lambda[i]*z[i] + 0.00001 ## hack required for Rjags -- otherwise 'incompatible'-error
z[i] ~ dbern(psi)

log(lambda[i]) <- lgBroodSize[i] + alpha + beta[1]*FoodTreatment[i] + beta[2]*SexParent[i] + beta[3]*FoodSex[i] + a[Nest[i]]
# lgBroodSize is offset
# alpha is overall intercept
# "a" is random effect of nest; because alpha is overall intercept, a should be centred on 0.

}

# priors:
alpha ~ dnorm(0, 0.01) # overall model intercept
for (m in 1:3){

beta[m] ~ dnorm(0, 0.01) # Linear effects
}
psi ~ dunif(0, 1) # proportion of non-zeros
for (j in 1:nnests){

a[j] ~ dnorm(0, tau) # random effect for each nest
}
tau ~ dgamma(0.001, 0.001) # prior for mixed effect variance

}

parameters <- c("alpha", "beta", "psi", "tau") # which parameters are we interested in getting reported?
ZIPR3jags <- jags(OwlsData, inits=inits, parameters, model.file = ZIPR3, n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, working.directory = getwd())

plot(ZIPR3jags)

8



80% interval for each chain R−hat
−2000

−2000

0

0

2000

2000

4000

4000

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

alpha
beta[1][2][3]
deviancepsi

medians and 80% intervals

alpha

0.7

0.8

0.9

1

beta

−0.4
−0.2

0
0.2
0.4

111111111 222222222 333333333

deviance

3320

3340

3360

psi

0.7

0.75

0.8

tau

0

5

10

15

Bugs model at "/var/folders/cc/3jfhfx190rb2ptxnqrqxj94m0000gp/T//RtmpeuCK00/model51bf1972b705.txt", fit using jags, 3 chains, each with 1000 iterations (first 500 discarded)

ZIPR3jags

Inference for Bugs model at "/var/folders/cc/3jfhfx190rb2ptxnqrqxj94m0000gp/T//RtmpeuCK00/model51bf1972b705.txt", fit using jags,
3 chains, each with 1000 iterations (first 500 discarded), n.thin = 5
n.sims = 300 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha 0.864 0.075 0.711 0.813 0.863 0.918 1.010 1.032 78
beta[1] -0.269 0.055 -0.370 -0.305 -0.268 -0.234 -0.155 1.015 110
beta[2] -0.080 0.043 -0.164 -0.109 -0.079 -0.053 0.002 1.005 240
beta[3] 0.102 0.071 -0.021 0.049 0.103 0.154 0.228 1.005 240
psi 0.741 0.019 0.699 0.730 0.740 0.754 0.774 1.029 88
tau 8.028 2.919 3.649 5.968 7.638 9.504 15.186 1.007 280
deviance 3337.625 13.781 3313.468 3328.301 3337.022 3344.906 3367.716 1.002 300

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 95.5 and DIC = 3433.1
DIC is an estimate of expected predictive error (lower deviance is better).

While we are now seeing a dramatic improvement in fit (DIC down by another 260 units or so!), we also
notice that convergence has suffered, and the R̂-values are higher than they should be for α. We re-adjust
our settings and repeat the run (which will take around 10 times as long).
ni <- 1E4
parameters <- c("alpha", "beta", "psi", "tau") # which parameters are we interested in getting reported?
ZIPR3jags <- jags(OwlsData, inits=inits, parameters, model.file = ZIPR3, n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, working.directory = getwd())

9



plot(ZIPR3jags)

80% interval for each chain R−hat
−2000

−2000

0

0

2000

2000

4000

4000

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

alpha
beta[1][2][3]
deviancepsi

medians and 80% intervals

alpha

0.7

0.8

0.9

1

beta

−0.4

−0.2

0

0.2

111111111 222222222 333333333

deviance

3320

3340

3360

psi

0.7
0.72
0.74
0.76
0.78

tau

0

5

10

15

Bugs model at "/var/folders/cc/3jfhfx190rb2ptxnqrqxj94m0000gp/T//RtmpeuCK00/model51bf219b3c62.txt", fit using jags, 3 chains, each with 10000 iterations (first 500 discarded)

ZIPR3jags

Inference for Bugs model at "/var/folders/cc/3jfhfx190rb2ptxnqrqxj94m0000gp/T//RtmpeuCK00/model51bf219b3c62.txt", fit using jags,
3 chains, each with 10000 iterations (first 500 discarded), n.thin = 5
n.sims = 5700 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha 0.869 0.086 0.693 0.812 0.870 0.927 1.032 1.019 140
beta[1] -0.269 0.059 -0.383 -0.310 -0.270 -0.229 -0.154 1.004 550
beta[2] -0.080 0.046 -0.171 -0.111 -0.080 -0.049 0.012 1.008 260
beta[3] 0.097 0.072 -0.046 0.048 0.098 0.146 0.235 1.004 680
psi 0.740 0.018 0.704 0.728 0.740 0.752 0.775 1.001 5700
tau 7.759 2.797 3.372 5.774 7.377 9.303 14.367 1.001 5100
deviance 3337.721 13.820 3315.223 3327.676 3336.110 3345.888 3368.959 1.001 5700

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 95.5 and DIC = 3433.2
DIC is an estimate of expected predictive error (lower deviance is better).

Okay. Again, ψ is still high and seems to be a feature of the data, rather than due to our poor modelling of λ.

So, a first result interpretation is indicated: What effects do you see, and what do they mean?

10



6 Model 4: add effect of brood size on whether the chicks call at
all

It could be that a clutch of chicks is more vocal when it is larger. A single chick may remain silent more
often than it would when in a group of siblings (maybe I am extrapolating too much from football supporters
on their way to the stadium). Statistically, we can make ψ a function of other predictors, too, in this case of
brood size. Let’s try.
ZIPR4 <- function() {

for(i in 1:N){ # loop through all data points
SibNeg[i] ~ dpois(mu[i])
mu[i] <- lambda[i]*z[i] + 0.00001 ## hack required for Rjags -- otherwise 'incompatible'-error

z[i] ~ dbern(psi[i])
logit(psi[i]) <- alpha.psi + beta.psi*exp(lgBroodSize[i])

log(lambda[i]) <- lgBroodSize[i] + alpha + beta[1]*FoodTreatment[i] + beta[2]*SexParent[i] + beta[3]*FoodSex[i] + a[Nest[i]]
# lgBroodSize is offset
# alpha is overall intercept
# "a" is random effect of nest; because alpha is overall intercept, a should be centred on 0.

}

# priors:
alpha ~ dnorm(0, 0.01) # overall model intercept
for (m in 1:3){

beta[m] ~ dnorm(0, 0.01) # Linear effects
}
# remove this: psi ~ dunif(0, 1) # proportion of non-zeros
for (j in 1:nnests){

a[j] ~ dnorm(0, tau) # random effect for each nest
}
tau ~ dgamma(0.001, 0.001) # prior for mixed effect variance
alpha.psi ~ dnorm(0, 0.01)
beta.psi ~ dnorm(0, 0.01)

}

Since I am too lazy to re-code the inits-function, I simply set the inits-argument to auto-pilot.
parameters <- c("alpha", "beta", "tau", "alpha.psi", "beta.psi") # which parameters are we interested in getting reported?
ZIPR4jags <- jags(OwlsData, inits=NULL, parameters, model.file = ZIPR4, n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, working.directory = getwd())

plot(ZIPR4jags)

11



80% interval for each chain R−hat
−2000

−2000

0

0

2000

2000

4000

4000

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

alpha
alpha.psi
beta[1][2][3]
beta.psi
deviance

medians and 80% intervals

alpha

0.7
0.8
0.9
1

alpha.psi

−1.5
−1

−0.5
0

beta

−0.4
−0.2

0
0.2

111111111 222222222 333333333

beta.psi

0.3
0.4
0.5
0.6

deviance

3320

3340

3360

tau

0
5

10
15

Bugs model at "/var/folders/cc/3jfhfx190rb2ptxnqrqxj94m0000gp/T//RtmpeuCK00/model51bf31a83d73.txt", fit using jags, 3 chains, each with 10000 iterations (first 500 discarded)

ZIPR4jags

Inference for Bugs model at "/var/folders/cc/3jfhfx190rb2ptxnqrqxj94m0000gp/T//RtmpeuCK00/model51bf31a83d73.txt", fit using jags,
3 chains, each with 10000 iterations (first 500 discarded), n.thin = 5
n.sims = 5700 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha 0.872 0.082 0.706 0.818 0.874 0.926 1.031 1.005 480
alpha.psi -0.818 0.372 -1.564 -1.059 -0.818 -0.575 -0.091 1.001 5700
beta[1] -0.269 0.059 -0.384 -0.308 -0.269 -0.230 -0.154 1.002 2500
beta[2] -0.078 0.046 -0.167 -0.108 -0.078 -0.046 0.012 1.002 2100
beta[3] 0.096 0.073 -0.049 0.048 0.097 0.144 0.240 1.002 1200
beta.psi 0.441 0.087 0.271 0.383 0.440 0.497 0.614 1.001 5700
tau 7.683 2.735 3.526 5.700 7.311 9.247 14.171 1.001 5700
deviance 3336.881 13.374 3314.804 3327.225 3335.423 3344.837 3366.959 1.001 3600

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 89.4 and DIC = 3426.3
DIC is an estimate of expected predictive error (lower deviance is better).

And this model is better still (although “only” by 5 DIC-units).

So the one thing that we could still add is overdispersion as observation-level random effect. This is more to
show that we can, and less because I think it is really necessary.

12



7 Model 5: add OLRE-overdispersion

We add OLRE in the form of an additive effect ξ at the level of the Poisson regression. All ξ are normally
distributed with mean 0 (otherwise they’d compete with intercept α), and the precision of that normal
distribution is taken to be γ-distributed (as is common for precision).

Note that we now have two competing random effects: one at the level of the nest (a) and one at the level of
the individual observation (ξ).
ZIPR5 <- function() {

for(i in 1:N){ # loop through all data points
SibNeg[i] ~ dpois(mu[i])
mu[i] <- lambda[i]*z[i] + 0.00001 ## hack required for Rjags -- otherwise 'incompatible'-error

z[i] ~ dbern(psi[i])
logit(psi[i]) <- alpha.psi + beta.psi*exp(lgBroodSize[i])

log(lambda[i]) <- lgBroodSize[i] + alpha + beta[1]*FoodTreatment[i] + beta[2]*SexParent[i] + beta[3]*FoodSex[i] + a[Nest[i]] + xi[i]
# lgBroodSize is offset
# alpha is overall intercept
# "a" is random effect of nest; because alpha is overall intercept, a should be centred on 0.

}

# priors:
alpha ~ dnorm(0, 0.01) # overall model intercept
for (m in 1:3){

beta[m] ~ dnorm(0, 0.01) # Linear effects
}
# remove this: psi ~ dunif(0, 1) # proportion of non-zeros
for (j in 1:nnests){

a[j] ~ dnorm(0, tau) # random effect for each nest
}
tau ~ dgamma(0.001, 0.001) # prior for mixed effect variance
alpha.psi ~ dnorm(0, 0.01)
beta.psi ~ dnorm(0, 0.01)

for (i in 1:N){
xi[i] ~ dnorm(0, tau.xi) # on average, xi should be 0 otherwise it competes with the intercept alpha!

}
tau.xi ~ dgamma(0.001, 0.001) # prior for mixed effect variance

}

parameters <- c("alpha", "beta", "tau", "alpha.psi", "beta.psi", "tau.xi") # which parameters are we interested in getting reported?
ZIPR5jags <- jags(OwlsData, inits=NULL, parameters, model.file = ZIPR5, n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, working.directory = getwd())

plot(ZIPR5jags)

13



80% interval for each chain R−hat
−1000

−1000

0

0

1000

1000

2000

2000

3000

3000

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

alpha
alpha.psi
beta[1][2][3]
beta.psi
deviance
tau

medians and 80% intervals

alpha

0.4
0.6
0.8
1

alpha.psi

−1.5
−1

−0.5
0

beta

−1
−0.5

0
0.5

111111111 222222222 333333333

beta.psi

0.3
0.4
0.5
0.6

deviance

2100
2150
2200
2250

tau

0
5

10
15
20

tau.xi

1.5
2

2.5
3

Bugs model at "/var/folders/cc/3jfhfx190rb2ptxnqrqxj94m0000gp/T//RtmpeuCK00/model51bf64d413a3.txt", fit using jags, 3 chains, each with 10000 iterations (first 500 discarded)

ZIPR5jags

Inference for Bugs model at "/var/folders/cc/3jfhfx190rb2ptxnqrqxj94m0000gp/T//RtmpeuCK00/model51bf64d413a3.txt", fit using jags,
3 chains, each with 10000 iterations (first 500 discarded), n.thin = 5
n.sims = 5700 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha 0.707 0.120 0.474 0.629 0.709 0.786 0.936 1.040 85
alpha.psi -0.746 0.414 -1.571 -1.023 -0.739 -0.469 0.070 1.001 5700
beta[1] -0.494 0.147 -0.772 -0.597 -0.498 -0.391 -0.208 1.005 510
beta[2] -0.096 0.108 -0.302 -0.169 -0.097 -0.022 0.114 1.006 370
beta[3] 0.170 0.175 -0.183 0.052 0.174 0.289 0.503 1.005 520
beta.psi 0.461 0.098 0.271 0.394 0.460 0.525 0.657 1.001 5600
tau 9.940 5.798 3.519 6.386 8.692 12.190 23.060 1.003 1000
tau.xi 2.330 0.269 1.844 2.137 2.318 2.510 2.890 1.007 330
deviance 2194.515 35.049 2128.138 2171.191 2193.477 2218.101 2265.241 1.001 2800

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 614.0 and DIC = 2808.5
DIC is an estimate of expected predictive error (lower deviance is better).

Oh, that’s somewhat of a surprise! The DIC dropped precipitously to just under 2800, i.e. by over 500 units.
So I guess the data were substantially overdispersed, not only zero-inflated. Zero-inflation is still prevalent,
and we should plot the relationship for ψ to see which values it takes.

14



curve(plogis(-0.75 + 0.46*x), from=min(Owls$BroodSize), to=max(Owls$BroodSize), lwd=2, las=1, xlab="brood size")

1 2 3 4 5 6 7

0.5

0.6

0.7

0.8

0.9

brood size

pl
og

is
(−

0.
75

 +
 0

.4
6 

* 
x)

Obviously we should do this with all samples, not just the mean estimates:
# str(ZIPR5jags$BUGSoutput$sims.list)
curve(plogis(-0.75 + 0.46*x), from=min(Owls$BroodSize), to=max(Owls$BroodSize), lwd=1, col="red", las=1, xlab="brood size", ylab="proportion of non-0s in the data")
for (i in 1:length(ZIPR5jags$BUGSoutput$sims.list$alpha.psi)){

thisA <- ZIPR5jags$BUGSoutput$sims.list$alpha.psi[i]
thisB <- ZIPR5jags$BUGSoutput$sims.list$beta.psi[i]
curve(plogis(thisA + thisB*x), from=min(Owls$BroodSize), to=max(Owls$BroodSize), add=T, col=rgb(0.1, 0.1, 0.1, 0.01))

}

1 2 3 4 5 6 7

0.5

0.6

0.7

0.8

0.9

brood size

pr
op

or
tio

n 
of

 n
on

−
0s

 in
 th

e 
da

ta

15



So the proportion of 0s is between 0.4 and 0.9, and the trend is positive (i.e. more non-0s when there are
more siblings). So owl chicks are very much like football supporters, it seems.

8 Model diagnostics: simulation from model (5b)

So far we have not spend any time on evaluating whether any of the models was really “good”. That is not a
trivial task, and we need to consider a new idea before being able to do so.

We call a model “good”, if it is able to invent data that look like those we used to fit it to.

That is (I hope) logical. If a model fits poorly, then simulating (= inventing) data based on this model will
lead to data that may look very different from the original data. A near-perfect fit, in contrast, will yield
simulated data very similar to those observed.

In the following code, we simulate data from the model, not once, but several thousand times. We can then
see, how our observed data are positioned within the several thousand simulations (e.g. on which quantile
they lie; this is called the “Bayesian p-value”).

To simulate, it is easiest to use JAGS itself, rather than its output. To do so, we “invent” our response again,
within the model, with a new name (in this case S.SibNeg, with S. standing for “simulated”). Unsurprisingly,
almost doubling the number of parameters will also lead to substantially longer computation time!
ZIPR5s <- function() {

for(i in 1:N){ # loop through all data points
SibNeg[i] ~ dpois(mu[i])
mu[i] <- lambda[i]*z[i] + 0.00001 ## hack required for Rjags -- otherwise 'incompatible'-error

z[i] ~ dbern(psi[i])
logit(psi[i]) <- alpha.psi + beta.psi*exp(lgBroodSize[i])

log(lambda[i]) <- lgBroodSize[i] + alpha + beta[1]*FoodTreatment[i] + beta[2]*SexParent[i] + beta[3]*FoodSex[i] + a[Nest[i]] + xi[i]
# lgBroodSize is offset
# alpha is overall intercept
# "a" is random effect of nest; because alpha is overall intercept, a should be centred on 0.

}

# priors:
alpha ~ dnorm(0, 0.01) # overall model intercept
for (m in 1:3){

beta[m] ~ dnorm(0, 0.01) # Linear effects
}
# remove this: psi ~ dunif(0, 1) # proportion of non-zeros
for (j in 1:nnests){

a[j] ~ dnorm(0, tau) # random effect for each nest
}
tau ~ dgamma(0.001, 0.001) # prior for mixed effect variance
alpha.psi ~ dnorm(0, 0.01)
beta.psi ~ dnorm(0, 0.01)

for (i in 1:N){
xi[i] ~ dnorm(0, tau.xi) # on average, xi should be 0 otherwise it competes with the intercept alpha!

}
tau.xi ~ dgamma(0.001, 0.001) # prior for mixed effect variance

# # # # # # # # # # # # # # #

16



# simulate data here:
# replace all latent variables L with an S.L (mu, lambda, psi, z), as well as the response:
for (i in 1:N){ # loop through all data points

S.SibNeg[i] ~ dpois(S.mu[i])
S.mu[i] <- S.lambda[i]*z[i] + 0.00001 ## hack required for Rjags -- otherwise 'incompatible'-error

S.z[i] ~ dbern(S.psi[i])
logit(S.psi[i]) <- alpha.psi + beta.psi*exp(lgBroodSize[i])

log(S.lambda[i]) <- lgBroodSize[i] + alpha + beta[1]*FoodTreatment[i] + beta[2]*SexParent[i] + beta[3]*FoodSex[i] + a[Nest[i]] + xi[i]
}

}

parameters <- c("alpha", "beta", "tau", "alpha.psi", "beta.psi", "tau.xi", "S.SibNeg") # which parameters are we interested in getting reported?
ZIPR5sjags <- jags(OwlsData, inits=NULL, parameters, model.file = ZIPR5s, n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, working.directory = getwd())

We rather not look at the plot, where there would now be 599 values for S.SibNeg in addition to all the
model parameters we have looked at before. Same for the summary of the model, which also should be the
same as in model 5.

Instead, we extract the simulated data for each original data point. First, as an example, for the first data
point only:
plot(ecdf(ZIPR5sjags$BUGSoutput$sims.list$S.SibNeg[,1]+rnorm(5700, 0, 0.1)), verticals=T)
abline(v=Owls$SiblingNegotiation[1], lty=3)
abline(h=ecdf(ZIPR5sjags$BUGSoutput$sims.list$S.SibNeg[,1]+rnorm(5700, 0, 0.1))(Owls$SiblingNegotiation[1]), lty=3)

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(ZIPR5sjags$BUGSoutput$sims.list$S.SibNeg[, 1] + rnorm(5700, 
    0, 0.1))

x

F
n(

x)

Notice that adding some noise smoothes out the ECDF-curve, as has been recommended (somewhere).

So we see that the first data point (4 calls) lies roughly at the 0.5 quantile of the simulated data. Let’s do

17



this computation for all observations (and simulations), and plot these quantiles:
qq <- numeric(599)
for (i in 1:599){

qq[i] <- ecdf(ZIPR5sjags$BUGSoutput$sims.list$S.SibNeg[,i]+rnorm(5700, 0, 0.1))(Owls$SiblingNegotiation[i]+rnorm(5700, 0, 0.1))
}
plot(density(qq, from=0, to=1), main="Bayesian p-values of observations")

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Bayesian p−values of observations

N = 599   Bandwidth = 0.0443

D
en

si
ty

summary(qq)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.007544 0.382100 0.545800 0.498700 0.619100 0.927400

Ideally, we want our observations to be more or less evenly distributed across the range from 0 to 1. That
is clearly not the case. What we see is that most observations are around quantiles 0.45 and 0.6, in a very
non-uniform fashion.
par(mfrow=c(1,2))
plot(apply(ZIPR5sjags$BUGSoutput$sims.list$S.SibNeg, 2, mean), Owls$SiblingNegotiation, las=1, xlab="expected", ylab="observed")
abline(0,1)
plot(qq ~ apply(ZIPR5sjags$BUGSoutput$sims.list$S.SibNeg, 2, mean), las=1, xlab="expected", ylab="standardised residuals")

18



0 5 10 15 20 25 30

0

5

10

15

20

25

30

expected

ob
se

rv
ed

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

expected

st
an

da
rd

is
ed

 r
es

id
ua

ls

The quantile-quantile-plot looks almost fine, with some overestimation at high values. The standardised
residuals (which are actually the quantiles) show should no pattern with expectation, however!

That means: we’re not done yet. More model tuning is required to improve the model, so that the distribution
of simulations is more in line with the distribution of observations. (Small note: there is an integer problem
here, so some tricks such as adding noise was indicated. See DHARMa and its vignette for some comments
on that.)

19


	Introduction: what is zero-inflation?
	Mixture of distributions
	Modelling mixture distributions in JAGS
	Data preparation for JAGS
	The first (very primitive) zero-inflation model in JAGS
	Run the model

	Model 2: add predictors for \lambda
	Model 3: add random effect for nest
	Model 4: add effect of brood size on whether the chicks call at all
	Model 5: add OLRE-overdispersion
	Model diagnostics: simulation from model (5b)

