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Abstract

This introductory document aims to raise a few points that typically show up in
first steps in time-series analysis.

1 Introduction

There is a sheer endless number of time-series resources out there!1 Have a look at the
open book of Hyndman & Athanasopoulos, called “Forecasting: Principles and Practice”.2

Time series refers to data sets of a response that is recorded over longer periods of
time. The response can be univariate (e.g. the famous Keeling CO2-data we’ll look at
below), or multidimensional (e.g. climate data from 121 weather stations, or share values
for 4201 companies in Japan).

There are, fundamentally, two different types of questions, and hence approaches, to
time series analysis: (a) understanding whether something has an effect on a response that
just happens to be temporal; (b) predicting a time series into the future (“forecasting”). In
other words, (a) looks at significant effects of some predictor on y, just like in a regression
model; (b) makes extrapolations of y.

Let’s compare two rather different univariate time series examples.3

1https://www.statmethods.net/advstats/timeseries.html
2https://otexts.org/fpp2/
3Get the extended version of the co2-data for validation of forecast e.g. here: https://datahub.io/core/

co2-ppm.
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par(mfrow=c(1,2))
library(ggplot2)
library(gridExtra)
library(fpp2) # for the book of Hyndman & Athanasopoulos; calls ggplot2
p1 <- autoplot(co2)
p2 <- autoplot(melsyd[,"Economy.Class"]) +
ggtitle("Economy class passengers: Melbourne-Sydney")

grid.arrange(p1, p2, ncol=2)
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Economy class passengers: Melbourne−Sydney

One shows a very clear seasonal pattern, the other not; one shows a clear trend, the
other not. For neither we have explanatory variables. Both are time-series objects in R !

str(co2)

## Time-Series [1:468] from 1959 to 1998: 315 316 316 318 318 ...

str(melsyd)

## Time-Series [1:283, 1:3] from 1987 to 1993: 1.91 1.85 1.86 2.14 2.12 ...
## - attr(*, "dimnames")=List of 2
## ..$ : NULL
## ..$ : chr [1:3] "First.Class" "Business.Class" "Economy.Class"

The nice thing about having data as time-series object is that they work well for
plotting. It is somewhat tricky to get them into this shape, though. There is no time and
place here to go into that, but you may want to consult the help pages of ts and POSIXct
to generate and format temporal data.4 Typically, time series require NA-free data!

Since melsyd’s Economy.Class has one NA, we replace it by the mean of the data
points around it (no comment):

(missing <- which(is.na(melsyd[, "Economy.Class"])))

## [1] 13

melsyd[missing, "Economy.Class"] <- mean(melsyd[c(missing-1, missing+1), "Economy.Class"], na.rm=T)
MSE <- melsyd[, "Economy.Class"]

We shall now go through a few typical exploratory steps, before turning to actual
temporal models.

2 Decomposition into trend, seasonality and noise using loess

4In the “tidyverse”, the lubridate is your friend!
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plot(stl(co2, s.window="periodic"))
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# s.window: period in lags for seasonal extraction, minimally 7; or "periodic"
plot(stl(MSE, s.window="periodic"))
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The two decompositions couldn’t be more different. This “stl” correctly identifies the
annual cycle in the CO2-concentration, and it also finds a periodicity in the air travels
(with a noticeable dip around Christmas). But, as the grey boxes on the right-hand side
of each panel show, the remainder (aka “noise”) is a tiny fraction of the trend in the CO2
data, but a substantial part in the flights (note that this is a scaling bar, i.e. it covers the
same data range in each panel; roughly 1.8 for CO2 and 6 for the flights).

3 Detrending

Many analyses start with detrending, i.e. removing a trend that exists in the data. That
would be the “trend” component in the above plots. “Why?”, you may ask. Well, for
example if you are only interested in the periodic element, but not in the trend.

Think of tree ring widths. As the tree becomes older, tree rings become wider (because
only the outer few cm provide all the water flux for the whole tree), and then smaller
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again (as the old tree growths slower). If you now want to compare tree-ring widths
across many trees, you need to remove the age-trend in these data, because these are
irrelevant for, say, the climate signal in the data.

Detrending is done in slightly different ways in different disciplines. Two things seems
to be clear: the choice of detrending affects the results, and linear detrending is probably
universally wrong (and hence will not be shown here).

Let’s have a look at two ways of detrending, applied to the flights data. The first is
detrending using a spine, the second uses “empirical mode decomposition” (aka Hilbert-
Huang transformation5), which seems to be a favourite with physicists (so it must be
great):

library(mgcv)
MSEtimes <- as.numeric(time(MSE))
library(zoo)
head(as.yearmon(MSEtimes)) # just show that these are monthly values

## [1] "Jun 1987" "Jul 1987" "Jul 1987" "Jul 1987" "Jul 1987" "Jul 1987"

detrended1 <- gam(MSE ~ s(MSEtimes))
#plot(detrended1, residuals=T, pch="+") # for plotting the fitted trend
resid1 <- residuals(detrended1)
# now for EMD.
library(EMD)
detrended2 <- emd(xt=MSE, tt=MSEtimes)
# plot(MSEtimes, detrended2$residue) # the trend extracted
resid2 <- MSE - detrended2$residue
par(mfrow=c(1,2))
plot(MSEtimes, resid1, col="blue", type="l")
lines(MSEtimes, resid2, col="orange")
plot(resid1, resid2)
abline(0,1)
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So clearly there is some similarity, and some difference between the methods.

4 (Fourir- and wavelet-transformations)

(Not covered here, for lack of time.)
5https://en.wikipedia.org/wiki/Hilbert-Huang_transform
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5 Testing for a linear trend

Why would you want to test for a linear trend? There are infinitely many shapes a trend
can have, why single out the linear? Just like with detrending, very often people analyse
for linear trends because that is what they learned, not what they need. Do you really
have an hypothesis about linearity before you look at the data?6

Instead, we can analyse for a trend using the above GAM and get a significance of
that trend.

summary(detrended1)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## MSE ~ s(MSEtimes)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 21.5132 0.2037 105.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(MSEtimes) 8.93 8.999 40.92 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.563 Deviance explained = 57.7%
## GCV = 12.166 Scale est. = 11.739 n = 283

plot(detrended1, residuals=T, pch="+")
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Isn’t that great? So there is a non-linear trend (because the edf is > 1), which is highly
significant and explains 58/

WAIT! Just like any other regression model, also this model has assumptions that need
to be checked. Let’s have a look at the residuals:

6https://stats.stackexchange.com/questions/225003/test-for-trend-and-seasonality-in-time-series
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plot(predict(detrended1), residuals(detrended1))
abline(h=0)
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Hm, there is the cluster of 0s at the bottom left, which causes some heterogeneity, but
otherwise there is no obvious pattern in the data.

Given that the data are collected over some time at the same place, we may expect
that they are not independent. If I know how many people flew in January, I can guess
fairly accurately how many will fly in February. Thus, there may well be temporal
autocorrelation in the data, which we should investigate!

The most common way to do this is by means of the (partial) autocorrelation function-
plot:

par(mfrow=c(1,2))
acf(residuals(detrended1))
pacf(residuals(detrended1))
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What the ACF-plot shows is the correlation (on the y-axis) of the residuals with
themselves, shifted by 1, 2, 3, ... positions (“lag”). Clearly, residuals are not independent,
but carry some temporal autocorrelation for up to 5 units (months, in this case).

The partial ACF-plot is more interesting and revealing. It is computed by subtracting
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from each correlation the expected correlation from all previous lags.7 As a result, we
see that really there is “only” a strong 1-lag autocorrelation, which carries over to the
following lags.

Thus, our data are not independent and hence violate the assumptions of maximum like-

lihood estimation (and thereby those of OLS and GAM etc.). We have to find a way to
accommodate the temporal autocorrelation! We do that in the next section.

6 “Time-aware” (generalised) linear models

OLS, GLM and alike assume independence of data points. This is explicit in the fact that
we compute maximum likelihood as the sum of log-transformed probability densities of
the data points. This sum is valid only if data are independent (since P(A,B) = P(A)P(B)
iff8 A and B are independent).

We can write a linear (additive) model in this form:

y = f (X) + ε, with ε∼ N(μ = 0, σ = c),

where f is some function of the various predictors X in the model, and there is a normally
distributed additive error ε (with mean 0).

When data are non-independent, ε comes from a different distribution, namely one
where the value of ε1 is correlated with that of ε2, and so forth. This dependence has to
describe the PACF we visualised in the previous section. Mathematically, we write

ε∼ N(0,Σ),

where Σ is an n×n matrix, with entries s2
ij
, the expected co-variances between data points.

Σ is called a “variance-covariance” matrix.
So, how do we estimate s2

ij
? Well, we assume that the correlation of two data points is

a function of their distance in time, ∆T, e.g. decreasing exponentially:

s
2
ij
= ae

−b∆T = ae
−b|Ti−Tj|,

with a and b being positive parameters to be estimated from the data.
Or we can make the specific assumption that only a lag of one is present, and hence

only the previous data point is correlated with the focal point:

s
2
ij
=
{

c if |i − j| = 1
0 else

In this case, Σ will be a matrix with entries only on the diagonal and the first off-diagonals
(if the data are arranged by time). The entries on the diagonal are the variances of each
data point, which we typically assume to be identical, and the constant off-diagonal entries
c are the co-variances.

This model is known as the autoregressive model with lag one, AR1. It estimates
essentially two parameters, apart from those in the function f , namely c and s2ii. This
latter variance is now independently normal distributed (“white noise”).

Estimation of the time-dependent covariances is achieved using “Generalised Least
Squares” (GLS), which actually is relatively simple in the case of an AR1-model. So let us
amend our previous flight-analysis by an AR1 structure, first in a GLS before going to its
implementation in the GAM:

7https://en.wikipedia.org/wiki/Partial_autocorrelation_function
8No, this is not a typo! “Iff” is the mathematical shorthand for “if and only if”.
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#summary(OLS1 <- gls(MSE ~ MSEtimes))
summary(OLS1 <- lm(MSE ~ MSEtimes)) # identical!

##
## Call:
## lm(formula = MSE ~ MSEtimes)
##
## Residuals:
## Min 1Q Median 3Q Max
## -21.0895 -2.0586 0.7456 3.3912 9.3949
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1971.5133 372.6978 -5.290 2.47e-07 ***
## MSEtimes 1.0014 0.1873 5.348 1.85e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.949 on 281 degrees of freedom
## Multiple R-squared: 0.09237,Adjusted R-squared: 0.08914
## F-statistic: 28.6 on 1 and 281 DF, p-value: 1.849e-07

GLS1.AR1 <- gls(MSE ~ MSEtimes, correlation=corAR1(form= ~MSEtimes))
summary(GLS1.AR1)

## Generalized least squares fit by REML
## Model: MSE ~ MSEtimes
## Data: NULL
## AIC BIC logLik
## 1264.919 1279.472 -628.4593
##
## Correlation Structure: ARMA(1,0)
## Formula: ~MSEtimes
## Parameter estimate(s):
## Phi1
## 0.9538845
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -4998.352 9775.426 -0.5113181 0.6095
## MSEtimes 2.525 4.918 0.5134086 0.6081
##
## Correlation:
## (Intr)
## MSEtimes -1
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -11.5079978 -3.6676393 -2.5622524 -0.6448213 1.4113635
##
## Residual standard error: 2.271187
## Degrees of freedom: 283 total; 281 residual

This is to show that the temporal autocorrelation can severely affect your model fit
and inference!

The ordinary linear regression is highly significant, suggesting an increase by one
passenger per month, while the GLS finds nothing of that sort, due to dramatically larger
standard error:

8



olspred <- predict(OLS1, se.fit=T)
library(AICcmodavg)
glspred <- predictSE(GLS1.AR1, newdata=data.frame("MSEtimes"=MSEtimes), se.fit=T, ylab="passenger number")
plot(MSEtimes, olspred$fit, type="l", las=1, ylim=c(0, 100))
lines(MSEtimes, olspred$fit + 2*olspred$se.fit, lty=2)
lines(MSEtimes, olspred$fit - 2*olspred$se.fit, lty=2)
lines(MSEtimes, glspred$fit, col="orange", lty=1)
lines(MSEtimes, glspred$fit + 2*glspred$se.fit, col="orange", lty=2)
lines(MSEtimes, glspred$fit - 2*glspred$se.fit, col="orange", lty=2)
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Now we try the same with a more sophisticated wiggly line for the trend, only to
immediately encounter a problem:

detrended1.AR1 <- gamm(MSE ~ s(MSEtimes, bs="cs"), correlation=corAR1(form= ~MSEtimes))

## Error in chol.default(V$V): the leading minor of order 2 is not positive definite

# estimate phi independently:
res <- residuals(detrended1)
gls(res ~ 1, correlation=corAR1(form= ~MSEtimes)) # 0.7665

## Generalized least squares fit by REML
## Model: res ~ 1
## Data: NULL
## Log-restricted-likelihood: -629.3797
##
## Coefficients:
## (Intercept)
## 0.01227999
##
## Correlation Structure: ARMA(1,0)
## Formula: ~MSEtimes
## Parameter estimate(s):
## Phi1
## 0.7665213
## Degrees of freedom: 283 total; 282 residual
## Residual standard error: 2.253483

detrended1.AR1 <- gamm(MSE ~ s(MSEtimes, bs="cs"), correlation=corAR1(0.77)) # re-estimates phi
par(mfrow=c(1,2))
acf(residuals(detrended1.AR1$lme, type="normalized")) # gone! (more or less)
pacf(residuals(detrended1.AR1$lme, type="normalized"))
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Time for an analysis of the CO2-data!

co2times <- as.numeric(time(co2))
co2conc <- as.numeric(co2)
plot(co2times, co2conc, type="l")
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fgamco2.1 <- gam(co2conc ~ s(co2times))
plot(fgamco2.1) # only the trend, no season predictions
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days <- as.numeric(format(as.Date(time(co2)), "%j")) # ugly
fgamco2.2 <- gam(co2conc ~ s(co2times) + s(days, bs="cc")) # adds season
# plot effects
par(mfrow=c(1,2))
plot(fgamco2.2)

1960 1970 1980 1990

−
20

−
10

0
10

20
30

co2times

s(
co

2t
im

es
,8

.9
6)

0 50 100 150 200 250 300

−
20

−
10

0
10

20
30

days

s(
da

ys
,6

.9
3)

# plot fit
plot(co2times, co2conc, type="l", lwd=3)
lines(co2times, predict(fgamco2.2), col="red") # alright, I guess
pacf(residuals(fgamco2.2)) # more than lag 1 !
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fgamco2.3 <- gamm(co2conc ~ s(co2times) + s(days, bs="cc"), correlation=corAR1(0.6))
pacf(residuals(fgamco2.3$lme, type="normalized")) # fine, but spike at 12!
#period12 <- as.numeric(format(as.Date(time(co2)), "%Y")) %% 12
#fgamco2.4 <- gam(co2conc ~ s(co2times) + s(days, bs="cc") + s(period12, bs="cc"))
#pacf(residuals(fgamco2.4))
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We can also fit a more general, more flexible model structure, e.g. a decay of covariance
with time:

fgamco2.5 <- gamm(co2conc ~ s(co2times) + s(days, bs="cc"), correlation=corExp(form=~co2times))
fgamco2.5$lme # range is important!

## Linear mixed-effects model fit by maximum likelihood
## Data: strip.offset(mf)
## Log-likelihood: -228.9903
## Fixed: y ~ X - 1
## X(Intercept) Xs(co2times)Fx1
## 337.0556 13.5952
##
## Random effects:
## Formula: ~Xr - 1 | g
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## Structure: pdIdnot
## Xr1 Xr2 Xr3 Xr4 Xr5 Xr6 Xr7
## StdDev: 8.723869 8.723869 8.723869 8.723869 8.723869 8.723869 8.723869
## Xr8
## StdDev: 8.723869
##
## Formula: ~Xr.0 - 1 | g.0 %in% g
## Structure: pdIdnot
## Xr.01 Xr.02 Xr.03 Xr.04 Xr.05 Xr.06
## StdDev: 0.3829565 0.3829565 0.3829565 0.3829565 0.3829565 0.3829565
## Xr.07 Xr.08 Residual
## StdDev: 0.3829565 0.3829565 0.4981571
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~co2times | g/g.0
## Parameter estimate(s):
## range
## 0.2135817
## Number of Observations: 468
## Number of Groups:
## g g.0 %in% g
## 1 1

pacf(residuals(fgamco2.5$lme, type="normalized"))
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Now this is overall very similar to the AR1.

fgamco2.5 <- gamm(co2conc ~ s(co2times) + s(days, bs="cc"), correlation=corARMA(value=c(.5, 0.4), p=2, q=0))
pacf(residuals(fgamco2.5$lme, type="normalized"))

13



0 5 10 15 20 25

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4

Lag

P
ar

tia
l A

C
F

Series  residuals(fgamco2.5$lme, type = "normalized")

7 Conclusions

Time series analysis is actually quite a diverse set of statistical acitivities, ranging from
cool descriptives to nasty modelling. Make sure you know what you are doing! Feedback,

improvements, corrections and additions are welcomed!
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